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Abstract 
We present two solutions for the scale selection prob- 

lem in computer vision. The first one is completely non- 
parametric and is based on the the adaptive estimation 
of the normalized density gradient. Employing the sam- 
ple point estimator, we define the Variable Bandwidth 
Mean Shift, prove its convergence, and show its superi- 
ority over the fixed bandwidth procedure. The second 
technique has a semiparametric nature and imposes a 
local structure on the data to extract reliable scale in- 
formation. The local scale of the underlying density is 
taken as the bandwidth which maximizes the magni- 
tude of the normalized mean shift vector. Both estima- 
tors provide practical tools for autonomous image and 
quasi real-time video analysis and several examples are 
shown to illustrate their effectiveness. 

1 Motivation for Variable Bandwidth 
The efficacy of Mean Shift analysis has been demon- 

strated in computer vision problems such as tracking 
and segmentation in [5, 61. However, one of the limi- 
tations of the mean shift procedure as defined in these 
papers is that it involves the specification of a scale 
parameter. While results obtained appear satisfactory, 
when the local characteristics of the feature space differs 
significantly across data, it is difficult to find an opti- 
mal global bandwidth for the mean shift procedure. In 
this paper we address the issue of locally adapting the 
bandwidth. We also study an alternative approach for 
data-driven scale selection which imposes a local struc- 
ture on the data. The proposed solutions are tested in 
the framework of quasi real-time video analysis. 

We review first the intrinsic limitations of the fixed 
bandwidth density estimation methods. Then, two of 
the most popular variable bandwidth estimators, the 
balloon and the sample point,  are introduced and their 
advantages discussed. We conclude the section by show- 
ing that,  with some precautions, the performance of the 
sample point estimator is superior to both fixed band- 
width and balloon estimators. 

1.1 Fixed Bandwidth Density Estimation 

timate is defined by 
The multivariate fixed bandwidth kernel density es- 
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where the d-dimensional vectors { ~ i } ~ = ~ , , , ~  represent a 
random sample from some unknown density f and the 
kernel, K ,  is taken to  be a radially symmetric, non- 
negative function centered at zero and integrating to 
one. The terminology fixed bandwidth is due to  the fact 
that h is held constant across x E Rd.  As a result, the 
fixed bandwidth procedure (1) estimates the density at  
each point x by taking the average of identically scaled 
kernels centered at each of the data points. 

For pointwise estimation; the classical measure of the 
closeness of the estimator f to its target value f is the 
mean squared error (MSE), equal to  the sum of the 
variance and squared bias 

2 
MSE(x) = E [ f w  - m] 

= Var (f(x)) + [Bias (f(x))]'. (2) 

Using the multivariate form of the Taylor theorem, the 
bias and the variance are approximated by [20, p.971 

(3) 
Bias(x) x Th2p2(K)Af (x )  1 

and 

where p 2 ( K )  = Sz;K(z)dz and R ( K )  = jK(z)dz are 
kernel dependent constants, z1 is the first component, 
of the vector z, and A is the Laplace operator. 

The tradeoff of bias versus variance can be observed 
in (3) and (4). The bias is proportional to  h2, which 
means that smaller bandwidths give a less biased es- 
timator. However, decreasing h implies an increase in 
the variance which is proportional to n-l h-d. Thus for 
a fixed bandwidth estimator we should choose h that 
achieves an optimal compromise between the bias and 
variance over all x E R d ,  i.e., minimizes the mean inte- 
grated squared error (MISE) 

Var(x) M n-'h-d~(~)f(x) , (4) 

2 
MISE(x) = E /  (f(x) - f(x)) dx . (5) 

Nevertheless, the resulting bandwidth formula (see [17, 
p.851, [20, p.981) is of little practical use, since it de- 
pends on the Laplacian of the unknown density being 
estimated. 

The best of the currently available data-driven meth- 
ods for bandwidth selection seems to be the plug-in ru1.e 
[15], which was proven to be superior to least squares 
cross validation and biased cross-validation [ll], [lG, , 



p.461. A practical one dimensional algorithm based on 
this method is described in the Appendix. For the mul- 
tivariate case, see [20, p.1081. 

Note that these data-driven bandwidth selectors 
work well for multimodal data, their only assumption 
being a certain smoothness in the underlying density. 
However, the fixed bandwidth affects the estimation 
performance, by undersmoothing the tails and over- 
smoothing the peaks of the density. The performance 
also decreases when the data exhibits local scale varia- 
tions. 

1.2 Balloon and Sample Point Estimators 
According to expression (l), the bandwidth h can 

be varied in two ways. First, by selecting a different 
bandwidth h = h(x) for each es t imat ion  point x, one 
can define the balloon density estimator 

In this case, the estimate of f at x is the average of 
idenhisally scaled kernels centered at each data point. 

Second!, by selkcting a different bandwidth h = h(x,) 
for each data poznt x, we obtain the sample pozmt density 
estimator 

for which the estimate of f at x is the avemge of differ- 
ently scaled kernels centered at  each data point. 

While the balloon estimator has more intuitive ap- 
peal, its performance improvement over the fixed band- 
width estimator is insignificant. When the bandwidth 
h(x) is chosen as a function of the k-th nearest neigh- 
bor, the bias and variance are still proportional to  h' 
and n-lh-d, respectively [8]. In addition, the balloon 
estimators usually fail to  integrate to one. 

The sample point estimators, on the other hand, are 
themselves densities, being non-negative and integrat- 
ing to one. Their most attractive property is that a par- 
ticular choice of h(x2) reduces considerably the bias. In- 
deed, when h(x,) is taken to be reciprocal to the square 
root of f(x,) 

the bias becomes proportional to h4, while the variance 
remains unchanged, proportional to n-'h-d [l, 81. In 
(8), ho represents a fixed bandwidth and X is a propor- 
tionality constant. 

Since f (x, )  is unknown it has to be estimated from 
the data. The practical approach is to use one of the 
methods described in Section 1.1 to find ho and an ini- 
tial estimate (called pilot)  o f f  denoted by f. Note that 
by using f instead of f in (8), the nice properties of 

the sample point estimators (7) remain unchanged [8]. 
Various authors [16, p.561, [17, p.1011 remarked that 
the method is insensitive to the fine detail of the pilot 
estimate. The only provision that should be taken is to 
bound the pilot density away from zero. 

The final estimate (7) is however influenced by the 
choice of the proportionality constant X, which divides 
the range of density values into low and hzgh densities. 
When the local density is low, i.e., f(xz) < A, h(x,) 
increases relative to ho implying more s-moothing for 
the point x,. For data points that verify f(x,) > A, the 
bandwidth becomes narrower. 

A good initial choice [17, p.1011 is to take X as the ge- 
ometric mean of { f(z,) - } . Our experiments have 
shown that for superior results, a certain degree of tun- 
ing is required for A. Nevertheless, the sample point 
estimator proved to be almost all the time much better 
than the fixed bandwidth estimator. 

2 Variable Bandwidth Mean Shift 
We show next that starting from the sample point es- 

timator (7) an adaptive estimator of the density's nor- 
malized gradient can be defined. The new estimator, 
which associates to each data point a differently scaled 
kernel', is the basic step for an iterative procedure that 
we prove to converge to a local mode of the underlying 
density, when the kernel obeys some mild constraints. 
We called the new procedure the Varzable Bandwzdth 
Mean Shzft. Due to its excellent statistical properties, 
we anticipate the extensive use of the adaptive estima- 
tor by vision applications that require minimal human 
intervention. 
2.1 Definitions 

z=1 n 

To simplify notations we proceed as in [6] by in- 
troducing first the profile of a kernel K as a function 
k : [0,03) t R such that K ( x )  = k(ll~11~).  We also 
denote h, I h(x,) for all i = 1 . ,  .n. Then, the sample 
point estimator (7) can be written as 

where the subscript K indicates that the estimator is 
based on kernel K .  

A natural estimator of the gradient of f is the gra- 
dient of j~ (x) 
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and assumed that the derivative of profile k exists for 
all 2 E [0, oo), except for a finite set of points. 

The last bracket in (10) represents the variable band- 
width mean shift vector 

To see the significance of expression (12), we define 
first the kernel G as 

where C is a normalization constant that forces G to 
integrate to one. 

Then, by employing (8), the term that multiplies the 
mean shift vector in (10) can be written as 

G(x) = Cg(llxIl2), (13) 

(14) 

where 

f;:(x) = c (15) EL, f ( X d  
is nonnegative and integrates to one, representing an 
estimate of the density of the data points weighted by 
the pilot density values !(xi). 

Finally, by using (lo), (12), and (14) it results that 

Equation (16) represents a generalization of equation 
(13) derived in [6] for the fixed bandwidth mean shift. 
It shows that the adaptive bandwidth mean shift is an 
estimator of the normalized gradient of the underlying 
density. 

The proportionality constant, however, depends on 
the value of A. When X is increased, the norm of the 
mean shift vector also increases. On the other hand, 
a small value for X implies a small llMwll. Due to this 
external variability of the mean shift norm, the conver- 
gence property of an iterative procedure based on the 
variable bandwidth mean shift is remarkable. Note also 
that when X is taken equal to the arithmetic mean of 

, the proportionality constant becomes as 
in the fixed bandwidth case. 
{f(xi) 1 i=l ... n 

2.2 Properties of the Adaptive Mean Shift 
Equation (12) shows an attractive behavior of the 

adaptive estimator. The data points lying in large den- 
sity regions affect a narrower neighborhood since the 
kernel bandwidth hi is smaller, but are given a larger 
importance, due to the weight l/h;+'. By contrast, 
the points that correspond to the tails of the under- 
lying density are smoothed more and receive a smaller 
weight. The extreme points (outliers) receive very small 
weights, being thus automatically discarded. Recall 
that the fixed bandwidth mean shift [ 5 ,  61 associates 
the same kernel for each data point. 

The most important property of the adaptive esti- 
mator is the convergence associated with its repetitive 
computation. In other words, if we define the mean shij? 
procedure recursively as the evaluation of the mean shift 
vector M,(x) follbwed by the translation of the kernel 
G by M,(x), this procedure leads to a stationary point 
(zero gradient) of the underlying density. More specifi- 
cally, we will show that the point of convergence repre- 
sents a stationary point of the sample point estimator 
(9). Thus, the superior performance of the sample point 
estimator translates into superior performance for the 
adaptive mean shift. 

We denote by the sequence of successive 
locations of the kernel G,  where 

is the weighted mean at  yJ computed with kernel G 
and weights l /hf+2, and y1 is the center of the initial 
kernel. The density estimates computed with kernel K 
in the points (17) are 

S K  = { fK(J)}J=l,2 f { M Y J ) }  3=1,2 . (18) 
We show in Appendix that if the kernel K has a con- 

vex and monotonic decreasing profile and the kernel G 
is defined according to (1 1) and (13), the sequences (1  7) 
and (18) are convergent. This means that the adap- 
tive mean shift procedure initialized at  a given loca- 
tion, converges at a nearby point where the estimatoi 
(9) has zero gradient. In addition, since the modes oi" 
the density are points of zero gradient, it results that, 
the convergence point is a mode candidate. 

The advantage of using the mean shift rather than 
the direct computation of (9) followed by a search for lo- 
cal maxima is twofold. First, the overall computational 
complexity of the mean shift is much smaller than that 
of the direct method. The direct search for maxima 
requires a number of density function evaluations that 
increases exponentially with the space dimension. Sec- 
ond, for many applications (see for example [SI) we only 

440 



need to know the mode associated with a reduced set 
of data points. In this case, the mean shift procedure 
becomes a natural process that follows the trail to  the 
local mode. 

The iterative procedure for mode detection based on 
the variable bandwidth mean shift is summarized be- 
low. 

Variable Bandwidth Mean Shaft Algorithm 
Given the data points {xi}i=l...n: 

1. 

2. 
3. 

4. 

2.3 

Derive a fixed bandwidth ho and a pilot estimate 
f using the plug-in rule (see Appendix for the one 
dimensional plug-in rule). 
Compute 1ogX = n-l logf(xi). 
For each data point xi compute its adaptive band- 

width h(x;) = ho b/f(x,)] 
1 /2  . 

Initialize y1 with the location of interest and com- 
pute iteratively (17) till convergence. The conver- 
gence point is a point of zero gradient, hence, a 
mode candidate. 

Performance Comparison 
We compared the variable and fixed bandwidth mean 

shift algorithms for various multimodal data sets that 
exhibited also scale variations. The fixed bandwidth 
procedure was run with a bandwidth ho derived from 
the plug-in rule given in Appendix. 

The plug-in rule was developed for density estima- 
tion [15] and since here we are concerned with density 
gradient estimation it is recommended [20, p.491 to use 
a larger bandwidth to compensate for the inherently in- 
creased sensitivity of the estimation process. We have 
modified the plug-in rule by halvening the contribution 
of the variance term. This change was maintained for all 
the experiments presented in this paper. The constant 
X of the adaptive procedure was kept as the geometric 
mean of {?(xi)} . 

As one can see from Figures 1 and 2 the fixed band- 
width mean shift resulted in good performance for the 
locations where the local scale was in the medium range. 
However, the very narrow peaks were fused, while the 
tails were broken into pieces. On the other hand, the 
adaptive algorithm showed superior performance, by 
choosing a proper bandwidth for each data point. 

3 Semiparametric Scale Selection 

3.1 Motivation 
The previous two sections followed purely nonpara- 

metric ideas, since no formal structure was assumed 
about the data. Implying only a certain smoothness of 
the underlying density we used available algorithms for 

i=l ...n 

Figure 1: A mixture of 200 data points from each 
N(5,2), N(17,4), N(37,8), N(70,16), N(145,32). The 
continuous line is a scaled version of the density es- 
timate. The detected modes are marked proportional 
to the number of data points that converged to them. 
(a) Histograni of the data. (b) Variable Bandwidth. (c) 
Fixed Bandwidth. 

scale selection to derive an initial bandwidth ho. The 
criterion for bandwidth selection was a global measure 
(MISE), hence, ho achieved an optimal compromise be- 
tween the integrated squared bias and the integrated 
variance. Then, we modified this bandwidth for each 
data point, according to the local density. 

The main problem with this approach is that for 
multidimensional multimodal data, it is very difficult 
to determine the right ho from the sample points and 
many of the practical issues are yet to be resolved [20, 
p.1081. As a consequence, most of practical algorithms 
use empirical bandwidth selection rules that are less 
dependent or even independent from the sample data. 
This implies a decrease in their performance when the 
input statistics is nonstationary, as it happens most of 
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Figure 2: A mixture of 200 data points from each 
exp( 3) +25, 2chi2 (4) +50, lognormal( 2 , l )  t90, lognor- 
mal( 2 , l )  +90, 190-lognormal(3,1). The continuous line 
is a scaled version of the density estimate. The detected 
modes are marked proportional to the number of data 
points that converged to them. (a) Histogram of the 
data. (b) Variable Bandwidth. (c) Fixed Bandwidth. 

the time in vision tasks. 

3.2 Normalized Mean Shift Based Scale 
Selection 

We propose in this section a different approach for 
bandwidth selection. The idea is to  impose a local 
structure on the data by assuming that locally the 
underlying density is spherical normal with unknown 
mean p and covariance matrix X = u21. 

At a first look, the task of finding p and X for each 
data point seems to be very difficult. To locally fit 
a normal to the multivariate data one needs a priori 
knowledge of the neighborhood size in which the un- 
known parameters are to  be estimated. If the estima- 
tion is performed for several neighborhood sizes, a scale 

invariant measure of the goodness of fit is needed. 
Fortunately, a simple solution exists. It is based on 

the following theorem, valid when the number of avail- 
able samples is large. 

Theorem 1 If the true density f is normal with pa- 
rameters p and = u2 I ,  and the fixed bandwidth m e a n  
shift i s  computed with a spherical normal  kernel of band- 
width ho, then, the bandwidth Rormalized n o m  of the 
m e a n  shift vector i s  maximized when ho G 0 .  

Proof Recall that the fixed bandwidth mean shift 
vector computed with kernel G of bandwidth ho can be 

Since the true density f is normal with covar_iance 
matrix E = u21 it follows that the mean of fc(x), 
E f ~ ( x )  = 4(x; a2 +hi)  is also a normal surface with 
covariance (u2 + hi ) I .  Likewise, by taking into account 
(11) we have E [vfK(X)]  = V4(x ;a2  + hi) .  

By assuming that the large sample approximation is 
valid (see [HI) it results that 

[ ^  1 

where plim denotes probability limit with ho held con- 
stant. This is equivalent to assuming the sample size 
sufficiently large to  make the variances of the means 
relatively small. 

Finally, the norm of the bandwidth normalized mean 
shift is 

a quantity that has a unique positive maximum a t  
ho = U .  

Theorem 1 leads to  a very simple and accurate scale 
selection rule: the underlying density has the local scale 
equal to  the bandwidth that maximizes the norm of the 
normalized mean shift vector. We expect that a simi- 
lar property holds in the case of anisotropic covariance 
matrices. 

3.3 Scale Selection Experiments 
Figure 3a shows a data set of size n = 2000, drawn 

from N(4,lO). The bandwidth normalized mean shift is 
represented in Figure 3b as a function of scale. Observe 
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Figure 3: Semiparametric scale selection. (a) Input 
data. N(10,4), n = 2000. (b) Normalized mean shift 
as a function of scale for the points with positive mean 
shift. The upper curves correspond to the points 10- 
cated far from the mean. The curves are maximized for 
ho = 4. 

the accurate local scale indication by the maxima of the 
curves. The same accurate results were obtained for two 
and ihree dimensions. 

4 Video Data Analysis 
A fundamental task in video data analysis is to de- 

tect blobs represented by collections of pixels that are 
coherent in spatial, range, and time domain [21]. The 
two dimensional space of the lattice is known as the 
spatial domain while the gray level, color, spectral, or 
texture information is represented in the range domain. 

Based on the two new estimators introduced in Sec- 
tions 2 and 3 we present next an autonomous technique 
that segment a video frame into representative blobs de- 
tected in the spatial and color domains. The technique 
can be naturally extended to incorporate time informa- 
tion, this being one of the subjects of our current work. 

We selected the orthogonal features I1 = ( R  + G + 
B ) / 3 ,  I2 = (R-B)/2 and I 3  = (2G-R-B)/4 from [lo] 
to represent the color information. Due to the orthogo- 
nality of the features, the one dimensional plug-in rule 
for bandwidth selection can be applied independently 
for each color coordinate. 

As in [5], the idea is to apply the mean shift proce- 
dure for the data points in the joint spatial-range do- 
main. Each data point becomes associated to a point 
of convergence which represents the local mode of the 
density in a d = 2 + 3 dimensional space (2 spatial 
components and 3 color components). 

We employed a spherical kernel for the spatial do- 
main and a product kernel for the three color compo- 
nents. The efficiency of the product kernel is known to 
be very close to that of spherical kernels [20, p.1041. 

Due to the different nature of the two spaces, the 
problem of bandwidth selection has been treated dif- 

ferently for each space. A fixed bandwidth was first 
derived for each color component, based on the one di- 
mensional plug-in rule. Then, the pilot density has been 
computed for each pixel, and the adaptive color band- 
widths were determined according to  (8) for each pixel. 
This process has been repeated for different scales of 
the spatial kernel. Finally, the spatial scale has been 
selected for each pixel according to  the semiparamet- 
ric rule. As a result, each pixel received a unique color 
bandwidth for color and a unique spatial bandwidth. 

To obtain the segmented image, the adaptive mean 
shift procedure has been applied in the joint domain. 
The blobs were identified as groups of pixels that had 
the same connected convergence points (see [5]). The 
algorithm is summarized below. 

Adaptive Mean  Shift Segmentation 
Given the image pixels {xi; Ili, 12i, 13i}i=1,,,n, and a 
range of spatial scales r1 . . . T S :  

1. 

2. 

3. 

4. 

5 .  

Derive hl, h2, h3, a fixed bandwidth for each color 
feature. 

For the spatial scale q ,  compute the adaptive 
bandwidths hl(x,; TI), hz(x,; T I ) ,  hS(x,; TI) and 
determine the magnitude of the normalized mean 
shift vector M(x,; T I ) .  

Repeat Step 2. for the spatial scales 7-2 . . . T S .  

Select for each pixel a spatial scale r1 according 
to the semiparametric rule. Select also the color 
bandwidths h1(xz;r3), h2(x,;r1), and h3(x,;rI). 

Run the adaptive mean shift procedure, and iden- 
tify the blobs as groups of pixels having the same 
connected convergence points. 

Although the adaptive algorithm has an in- 
creased complexity, its careful software implementa- 
tion with three spatial scales (S=3) runs at about 8 
frames/second on a Dual Pentiuni I11 at 9OOMHz for a 
video frame size of 320 x 240 pixels. Figure 4 shows four 
examples demonstrating the segmentation of color im- 
age data with very different statistics. Figure 5 shows 
the stability of the algorithm in segmenting a color se- 
quence obtained by panning the camera. The identified 
blobs were maintained very stable, although the scene 
data changed gradually along with the camera gain. 

5 Discussion 
The most attractive property of the techniques pro- 

posed in this paper is the automatic bandwidth selec- 
tion in both color and spatial domain. 

The reason we used two different bandwidth selec- 
tion techniques for the two spaces was not arbitrary. 
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While the color information can be collected across the 
image, allowing the computation of robust initial band- 
width for color, the spatial properties of the blobs vary 
drastically across the image, requiring local decisions 
for spatial scale selection. 

The process defined by the mean shift technique in 
the color domain resembles bilateral filtering [19] (see 
also [3] for a discussion on the link between bilateral fil- 
tering, anisotropic diffusion [12], and adaptive smooth- 
ing [13]). Due to the weighting of the data, the adap- 
tive bandwidth mean shift is more related to robust 
anisotropic diffusion [4]. 

In the spatial domain, the mean shift is close to mul- 
tiscale techniques such as [2], and the semiparametric 
scale selection rule resembles in principle to  those de- 
veloped in [7, 91. 

The unification of all these ideas is an interesting 
subject for further research. 

Figure 4: 
240 pixels. 

Segmentation examples. Frame size: 320 x 

APPENDIX 
One dimensional plug-in rule [15] 

Compute + = Q3 - Q1, the sample interquartile 
range. 

Compute a = 0 . 9 2 0 + ~ - ' / ~ ,  b = 0.912+n-'/'. 
n n  

i=l  j = 1  

where @'i is the sixth derivative of the normal ker- 
nel (see [2O] [p.177]). 

n n  

sD ( U )  = {n(n - 1) --la-5Y2 7,p (xi - xj) 1, 
i=l j=1 

where 8' is the forth derivative of the normal ker- 
nel. 

Figure 5: Sequence of segmented images used to  test 
the stability of our algorithm. Frame size: 320 x 240 
pixels. 

5. 6 2  (h) = 1.357{ s ~ ( a ) / f ' ~  (b)}  1/7h5/7. 

6 .  Solve the equation in h 

[ R ( K ) I ( ~ ~ ( K ) ~ ~ ( ~ ~ ( ~ ) ) ) ] ~ / ~ ~ - ' / ~  - h = 0; 

where ,u2(K) and R ( K )  are defined in (3) and (4), 
respectively. 

Convergence Proof for Variable Bandwidth 
Mean Shift 

Since n is finite the sequence* fK is bounded, there- 
fore, it is sufficient to show that fK isstrictly monotonic 
increasing, i.e., if y j  # yj+' then f ~ ( j )  < f ~ ( j  + l),  
for all j = 1 , 2 . .  .. 

By assuming without loss of generality that yj = 0 
we write 

f K ( j  + 1) - = 

The convexity of the profile IC implies that 

k ( z 2 )  L k(Z1) + k'(Zl)(Q - Z1) (B.2) 

for all 2 1 ,  x2 E [0, CO), 2 1  # 2 2 ,  and since k' = -9, the 
inequality (B.2) becomes 

k ( Z 2 )  - k(z1) 2 9(Z1)(.1 - 5 2 ) .  03.3) 
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Using now (B.l) and (B.3) we have 

f K ( j  -t 1) - f K ( j )  2 

and by employing (17) it results that 

(B.5) 
Since k is monotonic decreasing we have -k‘(x) E 
g(x )  2 0 for all 2 E [ O , c o ) .  The sum 

E:=, h g  ( l \ ~ l 1 2 )  is strictly positive, since it was 

assumed to be nonzero in the definition of the mean 
shift vector (12). Thus, as long as y3+1 # y3 = 0, the 
right term of (B.5) is strictly positive, i.e., f ~ ( j  + 1) - 
f ~ ( j )  > 0. Hence, the sequence f~ is convergent. 

To show the convergence of the sequence { Y ~ } ~ = , , ~  
we rewrite (B.5) but without assuming that y, = 0. 
After some algebra it results that 

(B.6) 
Since f ~ ( j  + 1) - f ~ ( j )  converges to zero, (B.6) implies 
that ))yj+l -yjl) also converges to zero, i.e., {yj}j=l,2... 
is a Cauchy sequence. But any Cauchy sequence is con- 
vergent in the Euclidean space, therefore, { Y ~ } ~ = ~ , ~ , , ,  
is convergent. 
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